资源描述
2006高考复习易做易错题精选
立体几何
一、选择题:
1.(石庄中学)设ABCD是空间四边形,E,F分别是AB,CD的中点,则满足( )
A 共线 B 共面 C 不共面 D 可作为空间基向量
正确答案:B 错因:学生把向量看为直线。
2.(石庄中学)在正方体ABCD-ABCD,O是底面ABCD的中心,M、N分别是棱DD、DC的中点,则直线OM( )
A 是AC和MN的公垂线 B 垂直于AC但不垂直于MN
C 垂直于MN,但不垂直于AC D 与AC、MN都不垂直
正确答案:A 错因:学生观察能力较差,找不出三垂线定理中的射影。
3.(石庄中学)已知平面∥平面,直线L平面,点P直线L,平面、间的距离为8,则在内到点P的距离为10,且到L的距离为9的点的轨迹是( )
A 一个圆 B 四个点 C 两条直线 D 两个点
正确答案:B 错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。
4.(石庄中学)正方体ABCD-ABCD中,点P在侧面BCCB及其边界上运动,并且总保持AP⊥BD,则动点P的轨迹( )
A 线段BC B BB的中点与CC中点连成的线段
C 线段BC D CB中点与BC中点连成的线段
正确答案:A 错因:学生观察能力较差,对三垂线定理逆定理不能灵活应用。
5.(石庄中学)下列命题中:
1若向量、与空间任意向量不能构成基底,则∥ 。
2若∥, ∥,则∥ .
3若 、 、是空间一个基底,且 =+ + ,则A、B、C、D四点共面。
4若向量 + , + , + 是空间一个基底,则 、 、 也是空间的一个基底。其中正确的命题有( )个。
A 1 B 2 C 3 D 4
正确答案:C 错因:学生对空间向量的基本概念理解不够深刻。
6.(磨中)给出下列命题:①分别和两条异面直线AB、CD同时相交的两条直线AC、BD一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b在面α内的射影为c,直线a⊥c,则a⊥b④有三个角为直角的四边形是矩形,其中真命题是( )
正确答案:①
错误原因:空间观念不明确,三垂线定理概念不清
7.(磨中)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有( )
A、7 B、8 C、9 D、10
正确答案:A
错误原因:4+8—2=10
8.(磨中)下列正方体或正四面体中,P、Q、R、S分别是所在棱的中点,这四个点不共面的一个图是( )
正确答案:D
错误原因:空间观点不强
9.(磨中)a和b为异面直线,则过a与b垂直的平面( )
A、有且只有一个 B、一个面或无数个
C、可能不存在 D、可能有无数个
正确答案:C
错误原因:过a与b垂直的夹平面条件不清
10.(一中)给出下列四个命题:
(1)各侧面在都是正方形的棱柱一定是正棱柱.
(2)若一个简单多面体的各顶点都有3条棱,则其顶点数V、面数F满足的关系式为2F-V=4.
(3)若直线l⊥平面α,l∥平面β,则α⊥β.
(4)命题“异面直线a、b不垂直,则过a的任一平面与b都不垂直”的否定.
其中,正确的命题是 ( )
A.(2)(3) B.(1)(4) C.(1)(2)(3) D.(2)(3)(4)
正确答案:A
11.(一中)如图,△ABC是简易遮阳棚,A,B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角应为( )
A.75° B.60° C.50° D.45°
正确答案:C
12.(蒲中)一直线与直二面角的两个面所成的角分别为α,β,则α+β满足( )
A、α+β<900 B、α+β≤900 C、α+β>900 D、α+β≥900
答案:B
点评:易误选A,错因:忽视直线与二面角棱垂直的情况。
13.(蒲中)在正方体AC1中,过它的任意两条棱作平面,则能作得与A1B成300角的平面的个数为( )
A、2个 B、4个 C、6个 D、8个
答案:B
点评:易瞎猜,6个面不合,6个对角面中有4个面适合条件。
14.(蒲中)△ABC的BC边上的高线为AD,BD=a,CD=b,将△ABC沿AD折成大小为θ的二面角B-AD-C,若,则三棱锥A-BCD的侧面三角形ABC是( )
A、锐角三角形 B、钝角三角形
C、直角三角形 D、形状与a、b的值有关的三角形
答案:C
点评:将平面图形折成空间图形后线面位置关系理不清,易瞎猜。
15.(江安中学)设a,b,c表示三条直线,表示两个平面,则下列命题中逆命题不成立的是( )。
A.,若,则
B.,,若,则
C.,若,则
D.,是在内的射影,若,则
正解:C
C的逆命题是,若,则显然不成立。
误解:选B。源于对C是在内的射影理不清。
16.(江安中学)和是两个不重合的平面,在下列条件中可判定平面和平行的是( )。
A.和都垂直于平面
B.内不共线的三点到的距离相等
C.是平面内的直线且
D.是两条异面直线且
正解:D
对于可平行也可相交;对于B三个点可在平面同侧或异侧;对于在平面内可平行,可相交。
对于D正确证明如下:过直线分别作平面与平面相交,设交线分别为与,由已知得,从而,则,同理,。
误解:B
往往只考虑距离相等,不考虑两侧。
17.(江安中学)一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D、E、F,且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )
A.
B.
C.
D.
正解:D。
当平面EFD处于水平位置时,容器盛水最多
最多可盛原来水得1-
误解:A、B、C。由过D或E作面ABC得平行面,所截体计算而得。
18.(江安中学)球的半径是R,距球心4R处有一光源,光源能照到的地方用平面去截取,则截面的最大面积是( )。
A.
B.
C.
D.
正解:B。
如图,在中,于
则即
又
以为半径的圆的面积为
误解:审题不清,不求截面积,而求球冠面积。
19.(江安中学)已知AB是异面直线的公垂线段,AB=2,且与成角,在直线上取AP=4,则点P到直线的距离是( )。
E.
F.4
G.
H.或
正解:A。过B作BB’∥,在BB’上截取BP’=AP,连结PP’,过P’作P’Q连结PQ,PP’由BB’和所确定的
展开阅读全文